

Capture of Carbon Dioxide from Flue Gas Using a Cyclic Alkali Carbonate-Based Process

Second Annual Conference on Carbon Sequestration

Alexandria, Virginia May 2003

Research Triangle Institute
Research Triangle Park, North Carolina

Project Team

RTI

- David A. Green
- Raghubir P. Gupta
- Santosh K. Gangwal

LSU

Douglas P. Harrison

Church & Dwight

- Robert Berube
- Steve Lajoie

DOE/NETL

Michael K. Knaggs

- Brian S. Turk
- William J. McMichael
- Jeffrey W. Portzer

Objectives

To develop a carbon dioxide separation technology that is

- Regenerable sorbent-based
- Applicable to both coal and natural gas-based power plants
- Applicable as a retrofit to existing plants, as well as to new power plants
- Compatible with the operating conditions in current power plant configurations
- Relatively simple to operate
- Less expensive than currently available technologies

Integration of the "Dry Carbonate" Process in a Combustion Facility

Concept Evaluation

(Sodium Bicarbonate Sorbent – "Baking Soda")

- Inexpensive CO₂ getler identified
- Getler is readily regenerated
- Low temperature process
- Convenient for flue gas treatment

Materials Screened

Sodium bicarbonate (SBC) – NaHCO₃

- Grade 1
- Grade 2
- Grade 3
- Grade 5
- Spherical

Trona--Na₂CO₃•NaHCO₃•2H₂O

- Grade T-50
- Grade T-200

Potassium Carbonate – K₂CO₃

- Analytical Grade
- Commercial Grade
- Jet-milled

Supported Sorbents

- 40% K₂CO₃/60% support
- 10% K₂CO₃/90% support
- 20% Na₂CO₃/80% support
- 40% Na₂CO₃/60% support

Sorbent Characterization and Testing

Physical

- Particle Size Distribution (RTI)
- Surface Area (RTI & C&D)
- Attrition Resistance (RTI)
- Pore Size Distribution (RTI)
- Bulk Density (RTI)
- X-ray Diffraction (C&D)
- Scanning Electron Microscopy (C&D)
- Fluidization Characteristics (RTI)

Chemical

- Thermogravimetry (RTI & LSU)
- Fixed Bed Testing (LSU)
- Fluidized Bed Testing (RTI)

Sodium Carbonate Chemistry

Reaction	∆ H Kcal/gmol CO₂	
$2/3 \text{ Na}_2\text{CO}_3 \cdot 3\text{Na} + CO_3 = 5/3 \text{ Na}_2\text{CO}_3 + CO_2 + H_2\text{O}$	32.8	
5 NaHCO ₃ 与 Na ₂ CO ₃ •3NaHCO ₃ +CO ₂ +H ₂ O	32.1	
2NaHCO ₃ 与 Na ₂ CO ₃ +CO ₂ +H ₂ O	30.8	

CO₂ removal is exothermic

Sorbent regeneration is endothermic

Fundamental Kinetic and Thermodynamic Studies

- First order reaction kinetics
 - -CO₂
 - $-H_2O$
- Temperature sensitive kinetics
 - NaHCO₃ product at 60 °C
 - Intermediate product (WS) at 70 °C
 - Higher temperatures decrease CO₂ removal
- Potential temperature control strategies
 - Cold diluents → solids
 - Liquid H₂O addition
 (Δ H_{VAP} = 10 Kcal/gmol)

Sorbent Operating Temperature Ranges

Sodium Carbonate

- Carbonation: 60 80 °C
- Regeneration (decarbonation; calcination): > 120 °C

Potassium Carbonate

- Carbonation: up to 120 °C
- Regeneration (decarbonation; calcination): > 140 °C

TGA Cyclic Reactivity Testing

Fixed-Bed Reactor System at LSU

Fixed-Bed Testing of SBC

SBC Sorbent Interaction with HCl and SO₂

Hydrogen Chloride

- 1-inch Fluidized-bed testing
- 100 ppm HCl in simulated flue gas
- >98% removal with 1.2 sec superficial residence time

Sulfur Dioxide

- TGA tests and 1-inch fluidized-bed testing
- 1000 ppm SO₂ in simulated flue gas
- >95% removal
- Irreversible at temperatures ≤ 200 °C

RTI's Bench-Scale Fluid-Bed Test Unit

Fluid-Bed Testing of 40% Supported Sodium Carbonate

Carbonation in 7% Carbon Dioxide, 6% Water Vapor

Conceptual Transport Reactor System

Transport Reactor Approach

Advantages

- Low pressure drop (<1 psi [< 30 in. W.C.])
- Reliable and effective solid sorbent movement
- Superior temperature control

Sorbent design challenges

- High sorbent reactivity required
 - Short residence times (2-6 seconds)
- Highly attrition-resistant sorbent required
 - High sorbent flux rate

Engineering Design Challenges

Heat integration

- Capturing low-grade, low-value heat in the steam cycle for sorbent regeneration
- Minimizing parasitic power consumption
- Heat transfer:
 - Removal of carbonation heat of reaction
 - Addition of regeneration energy

Low pressure drop of flue gas stream

Minimizing additional power requirements of the I.D. fan

Sorbent Transfer

Efficiently move sorbent between carbonation reactor and regenerator

Heat Integration Analysis

Goal: Minimize process energy requirements

Target: Regeneration

- Largest energy requirement
- Low-level heat (120-140 °C)

Solutions

- Steam usage
- Low-level heat sources
 - Recover flue gas heat
 - Extract heat from cooling water
 - Alternative air preheating schemes

Comparison of Coal Fired Power Plants With and Without CO₂ Removal

Case	Heat Require- ment for CO ₂ Sor- bent Regeneration, Btu/Ibmol CO ₂	Gross Plant Power kWe	Auxiliary Power Requirement kWe	Net Plant Power kWe	Plant Efficiency (HHV) %
EPRI Base Case 7C Coal Fired Steam Plant; no CO ₂ Removal	Not Applicable	491,108	29,050	462,058	40.5
EPRI Case 7A MEA CO ₂ Removal	71,140 ^E	402,254	72,730	329,524	28.9
EPRI Case 7A Re-calc'd	103,400 ^A	362,178	72,730	289,448	25.4
Comparison Case Na ₂ CO ₃ -based Dry CO ₂ Removal	60,000	416,144	72,730	343,414	30.1

90% CO₂ Removal for Applicable Cases

For all cases: Heat input = 1,140,155 kW_{heat} (HHV)

 $^{\rm E}$ EPRI, Evaluation of Innovative Fossil Fuel Power Plants with ${\rm CO_2}$ Removal, 2000

^AAlstom Power, Engineering Feasibility and Economics of CO₂ Capture on an Existing Coal-Fired Power Plant, 2001

Summary of Research Findings

The sodium and potassium carbonate sorbents react readily to remove CO₂

The materials can be cycled repeatedly without appreciable loss of activity

The carbonate/carbon dioxide reaction may be limited by considerations of heat removal from the sorbent particle

The high initial rates of reaction may be suitable for short residence time transport reactor systems

Regeneration of sorbent can be carried out in an essentially pure carbon dioxide stream

Supported materials provide suitable activity and attrition resistance

Technology Development Plan

Evaluate concept

Kinetic studies
Material screening
Sorbent development
Process modeling
Preliminary economics

Scale-up of sorbent production Sorbent evaluation

- Reactivity
- Capacity
- Attrition
- Stability

Energy analysis

- Heat requirements
- Temperature constraints

Economic evaluation

COMMERCIAL IMPLEMENTATION

Acknowledgements

U.S. DOE/NETL Cooperative Agreement No. DE-FC26-00NT40923

Project Manager: Michael K. Knaggs

Sequestration Project Manager: Scott M. Klara

